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ABSTRACT 

We prove that  for almost all a E G(Q) e the field (~(a) has the following 

property:  For each absolutely irreducible affine variety V of dimension r 

and each dominating separable rational map  ~: V ---* A ~ there exists a 

point a E V(Q(a)) such that  ~(a)  E Z r. We then say that  Q(a )  is P A C  

o v e r  Z. This is a stronger property then being PAC. Indeed we show tha t  

beside the fields Q(a)  other fields which are algebraic over Q and are known 

in the literature to be PAC are not PAC over Z. 

I n t r o d u c t i o n  

J. Ax observed in [Ax] that every nonprincipal ultraproduct K of finite fields has 

the following property, which later on Frey [Fre] called PAC: Every absolutely 

irreducible variety defined over K has a K-rational point. Ax asked in [Ax] 

whether there exists a PAC field which is algebraic over Q besides the algebraic 

closure Q of Q. The first author [Jal] gave a host of examples for such fields. 

Indeed, he proved that if e is a positive integer, then (~(a) is PAC for almost all 

a E G(Q) e. Here G(Q) is the absolute Galois group of Q, 'almost all' is used 

in the sense of the Haar measure of G(Q) e, and Q(a) is the fixed field in Q of 

a = (a l , . . . ,  he). Later on more examples of algebraic extensions of Q which are 

PAC were given. Thus, [F J1] constructs a Galois extension N of Q which is PAC 

such that ~(N/Q) is a direct product of symmetric groups. Recently Pop proved 

for the maximal totally real extension Qtr of Q that Qtr (vZ-~) is PAC [Pop]. 
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Almost all fields Q(a) mentioned above have a 'density property'  which has 

not yet been proven for any other PAC field: For each valuation w of Q and each 

absolutely irreducible variety V defined over 6 ( a )  the set V(Q(a)) is w-dense in 

v(Q). 
The present work adjusts the proof of the first author to prove that ahnost 

all fields Q(a) have a stronger property than being PAC: For each absolutely 

irreducible affine variety V of dimension r and each dominating separable rational 

map ~: V --* A ~ there exists a point a • V(Q(a)) such that ~a(a) • 7Z ~. We then 

say that Q(a) is P A C  over  7/̀ . 

This stronger PAC property of almost all fields Q(a) is responsible for the 

density property of the Q(a) (Theorem 9.2) and for Rumely's local global prin- 

ciple of their rings of integers. We prove the latter result in a subsequent work. 

Moreover, we prove in that work that this property also implies a weak and a 

strong approximation theorems for absolutely irreducible varieties over Q(a). 

In this work we use Faltings' theorem to prove that the PAC Galois extension 

N of Q mentioned above is PAC over no number field. We prove further that  the 

field Qtr(x/%--1) is PAC over no totally real number field. It is an open question 

if Qsol is a PAC field. Nevertheless, the same method shows that it is certainly 

PAC over no number field. Thus, the fields Q(a) appear to be 'more pseudo 

algebraically closed than other PAC fields'. We don't  know of any other example 

of an algebraic extension of Q which is PAC field over 7/̀  or over Q. 

Fried and VSlklein [FrV] prove that if K is a PAC field of characteristic 0 and 

G is a finite group, then there are infinitely many positive integers r such that  G 

can be realized over K(t), regularly over K, with exactly r branch points. This 

result applies also for almost all fields Q(a). We observe here that since almost 

all Q(a)  are PAC over 7/,, the branch points of the cover that realizes G can be 

taken to be finite and Z-rational. 

ACKNOWLEDGEMENT: We are indebted to Wulf-Dieter Geyer for his valuable 

contributions to Sections 4 and 8. We also thank Dan Haran, for suggestions 

that have improved the presentation of Section 4. 

1. Definitions and basic properties 

Recall that a field M is p s e u d o  a lgebra ica l ly  c losed (P A C)  if every absolutely 

irreducible variety V defined over M has an M-rational point. If O is a subring 

of M, then M may have a stronger property: 
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Definition 1.1: Let O be a subset of a field M. We say that M is P A C  over  O 

if for every affine absolutely irreducible variety V of dimension r > 0 and for each 

dominating separable rational map p: V --* A r over M there exists a C V(M) 

such that ~a(a) • O ~. 

If x = (Xl . . . . .  xn) is a generic point of V over M, then the assumption that 

is dominating means that trans.deg M M(p(x))  = r, and being separable then 

means that M(x)/M(~(x)) is a finite separable extension. I 

Remark 1.2: By definition, each PAC field is PAC over itself. Conversely, the 

following statements hold for a PAC field M over a subset O: 

(a) M is PAC. Indeed, if V and x are as above, then M(x) is a separable 

extension of M of transcendence degree r. Let t~ , . . . ,  tr be a separating tran- 

scendence basis for M(x)/M. Then M(x)/M(t) is a finite separable extension 

and t l , . . . ,  t~ are rational functions in xl . . . .  , xn with coefficients in M. So, the 

map x H t defines a dominating separable rational map ~: V --~ A ~ over M. By 

definition, V(M) is nonempty. So, M is PAC. 

(b) O is infinite. Apply the definition on the absolutely irreducible poly- 

nomial X 2 + T 2 + 1 to conclude that O is nonempty. If O were finite consider 

the curve defined by 1 + l - Ia~o(T - a ) X  = 0 and let ~a be the projection on 

the T-coordinate. Any solution (t, x) of this equation with t E O will lead to a 

contradiction 1 = 0. 

(c) Suppose that V0 is in definition 1.1 an M-open nonempty subset of V. 

Then we may use Rabinovich trick IF J2, Proof of Prop. 10.1] and choose a to be 

in Vo(M). 
(d) More generally, let ~: V ~ W be a dominating separable rational map of 

absolutely irreducible quasi projective varieties of dimension r over M. Suppose 

that W has an M-open subset W0 which is M-isomorphic to an open subset of 

A ~ . Take affine nonempty M-open subset V0 of V which is contained in ~- l (W0).  

Then, there exists a E Vo(M) such that ~(a) C Wo(O). 

(e) If S is a subset of M that contains O, then M is also PAC over S. I 

As in the case of PAC fields, it suffices to check the condition of Definition 1.1 

only for plane curves: 

LEMMA 1.3: Let 0 be a subring of a field M. A necessary and sufficient condition 

for M to be PA C over 0 is 

(1) For each absolutely irreducible polynomial f E M[T, X] such that ~x 7 ~ 0 
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and for each 0 ¢ g • M[T] there exists  ( a, b) • 0 x M such that  f ( a, b) = 0 

and g(a) # o. 

Proof'. Condition (1) is obviously necessary for M to be PAC over O. So assume 

(1). Then the following statement is true for r = 1. 

(2) For each absolutely irreducible polynomial f • M [ T 1 , . . . ,  Tr, X] such that 

~ 0 and each 0 ~ g • M[T1, Tr] there exist a b . .  ,a~ • O and OX " " " ' " 
b • M such that  f ( a ,  b) = 0 and g(a) ~ 0. 

Assume inductively that r _> 2 and that (2) is true for r - 1. Let Uo, ul be alge- 

braically independent elements over M. By IF J2, Prop. 9.33], f (T1  . . . .  , T~ - I ,  uo+ 

ulT1,  X )  is an absolutely irreducible polynomial with coefficients in M ( u o ,  u l ) .  

Use the Bertini-Noether theorem IF J2, Prop. 9.29] to find co, Cl • O such that the 

polynomial f ( T1, . . . , T~-  I , co + oT1,  X) is absolutely irreducible, g( T1, . . . , T~- I , 

co+elT1) ~ 0 and ~x (T1 , . . . ,  T~-I, c0+clT1, X) ~ 0. By the induction hypothe- 

sis there exist a l , . . . ,  a , -1  • O and b • M such that f ( a l , . . . ,  a~- l ,  c0+clal ,  b) = 

0 and g ( a l , . . . ,  a~_l,  co + ¢1al) ~ O. So (2) holds also for r. 

Now let V, qo, and x be as in Definition 1.1. Then t = ~(x) is a separating 

transcendence basis for M ( x ) / M .  Choose a primitive element y for M ( x ) / M ( t )  

which is integral over M[t] and let f • M[T,  Y] be a monic polynomial in Y such 

that f ( t ,  Y) = i rr(M(t) ,  y). Then f is absolutely irreducible and O f / O Y  ~ O. 

Denote the hypersurface in A ~+1 defined by f ( T ,  Y) = 0 over M by W. Let 

~r: W --~ A r be the projection on the first r coordinates. The map (t, y) ~-~ x 

defines ab i ra t iona l  map 0: W -~ V over M such that ~ o 0  = ~r. Find 0 

g • M[T], an M-open subset V0 of V and an M-open subset Wo of W such 

that ~[vo: Vo --~ A * is a morphism, 0[wo: Wo ~ Vo is an isomorphism and 

Wo = ~r-I(A* - V(g) ) .  By (2) there exist a l , . . . ,  a~ • O and b • M such that  

f ( a ,b )  = 0 and g(a) ~ 0. Then (a,b) • W0. Let c = 0(a,b). Then c • V ( M )  

and ~(c) = a E OL Conclude that M is PAC over O. | 

Lemma 1.3 supplies the first example of a PAC field over a subring. 

E x a m p l e  1.4: If M is a separably closed field and O is an infinite subring, then 

M is PAC over O. | 

COROLLARY 1.5: Le t  M be a P A C  field over a subring 0 wi th  a quot ient  field 

K .  Then  K8 N M is P A C  over O. 

Proof: Let f E (Ks N M)[T, X] be an absolutely irreducible polynomial and let 
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0 ~ g e (K~ M M)[T]. Then there exist ho, hl • (Ks N M)[T] and 0 ~ h2 • 

(K~ M M)[T] such that 

(3) ho(T, X)/(T, X) + hi(T, X) X) = h2(T). 
CCA 

Since M is PAC over O, there exists (a, b) • O × M such that f(a,  b) = 0 and 

g(a)h2(a) ~ O. By (3), o°-~x (a, b) ~ 0. Hence b • h'~. Thus, K~ N M is PAC over 

O. I 

Example 1.6: Suppose tha t  M is a PAC field over a subring O. Let f l  . . . . .  fd E 

M[X] with d _> 2 be polynomials  which have no root  in common  and such tha t  

d f l / d X  ~ O. Let a l , . . . , a d  E M with a2 ¢ 0 and let m C M,  m ~ 0. Then  

h*(T, X )  = (mT + a l ) f l ( X ) + a 2 f 2 ( X ) + .  . "+adfd(X) is an absolutely irreducible 

polynomial  with Oh* ~ 0. Hence, by Lemma 1.3, there exists (a,b) E O × M 

such tha t  (me + al)fx(b) + a2f2(b) + . "  + adfd(b) = O. I 

If  M is perfect, then the condition on ~ to be separable is redundant .  

LEMMA 1.7: Let M be a perfect field which is PAC over a subring O. 

(a) For  each absolutely irreducible variety V of dimension r > O, for each 

nonempty Zariski open subset Vo of V and for each dominating rational 

map ~: V -* A r over M there exists a C Vo(M) such that ~(a)  C 0 r. 

(b) Let F / M  be a regular extension of transcendence degree 1, let t C F \ M,  

and let A be a finite subset of M.  Then F has an M-rational place ~r such 

that 7r(t) C 0 \ A. 

Proof of (a): Let x be a generic point of V over M,  let F = M ( x ) ,  and let 

t = ~(x) .  Then F / M ( t )  is a finite algebraic extension. Let E = M ( x ' )  be the 

maximal  separable extension of M ( t )  in F .  Then  x ~ generates an absolutely 

irreducible variety V I over M of dimension r and the map  x I ~-* t extends to a 

separable rat ional  map ~ :  V ~ --~ A r . 

Each of the coordinates xi of x satisfies an equat ion x q = / i ( x  ~) for some power 

q of char (M)  and a rat ional  function fi of V ~. Since M is PAC over O, there 

exists a '  C V ' ( M )  such tha t  ~ ' ( a ' )  E O r, each of the functions fi  is well defined 

at a '  and the unique point a of V(h:/) which lies over a '  belongs to V0(~/). The 
q 

coordinates of a satisfy a i = f i ( a ' ) .  Since M is perfect, a E Vo(M), as desired. 

Proof of (b): Let xa . . . .  , xn be generators of the integral closure of M[t] in F 

[Lal,  p. 120, Thm.  2]. The curve C which x defines over M is normal,  hence 
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smooth [Sha, p. 112]. Let ~: C -~ A 1 be the epimorphism which is defined by 

~(x) = t. By (a), there exists a E C ( M )  which does not belong to ~ - l ( A )  such 

that  ~(a)  E O. Since a is simple on C, the specialization x -* a extends to an 

M-rational place ~r of F [JAR, Cot. A2]. It  satisfies ~r(t) = ~(a) E O \ A. | 

2. Algebraic extensions 

Each algebraic extension of a PAC field is also PAC IF J2, Cor. 10.7]. The proof 

of this result is done first for separable extensions, using Weil's descent, and then 

for purely inseparable extensions, using Roquette 's  descent. The application of 

Weil's descent to PAC over subrings forces extensions of the subrings: 

LEMMA 2.1: Let N / M  be a tlnite separable extension. Suppose that M is a 

PAC field over a subring O. Let w l , . . . ,Wd  be a basis for N / M  and let S = 

O[wl , . . . ,  Wd]. Then N is PAC over S. 

Proof." Let V be an absolutely irreducible variety in A n of dimension r and let 

~: V ---* A~ be a dominating separable rational map defined over N. Replace 

V by the graph V' of ~ in V x A ~ and ~ by the projection of V' on the last 

r coordinates, if necessary, to assume that  ~ is the projection on the first r 

coordinates. 

Let a l , . . .  ,ad, with a l  = 1, be the d distinct M-isomorphisms of N into M~. 

Denote the coordinates of A n by xk, k = 1 . . . .  ,n  and those of A nd by  Yih, 

i = 1 . . . .  , d, and k = 1 , . . . ,  n. Let ,~: A nd ---4 A n be the linear map over N given 

by 

d 

(1) A(y) = x and xk = ~ wiYik, k = 1 , . . . , n ,  
i=1 

and let 

¢ = ~ 1 ( : )  x - . .  x ~d( : ) :  ~ l ( V )  x . . .  x ~ d ( v )  -~ (At)  a. 

Then • is a dominating separable morphism over N. 

By [F J2, Prop. 9.34] there exists an absolutely irreducible variety W C_ A nd 

defined over M such that  the restriction of al(,~) x . . .  x Crd(/~ ) to W is an iso- 

morphism A: W --* a l (V)  x . . .  x ad(V) (which is defined over the Galois closure 

of N / M ) .  Consider the projection ¢: W --* A rd given by 

(2) ¢(Y) = Y0, where Yo = (Yik)l<i<_d; l<k<r- 
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Finally, let A0: A r d  ~ A r be the linear map over N given as in (1), where now 

k = 1 , . . . , r  and let Ao = az(Ao) x --- x ad(AO). Then the following diagram is 

commutative: 
W A.o.l(V) x . . .xaa(V)  ' ~ . V  

Ard Ao * A r × . . .  x A  r ~rO . Ar 

where 7r and 7to are the projections on the first components. Also, 7r o A = A[w 

and 7to o Ao = Ao. 

Since both A and A0 are isomorphisms, and • is a dominating separable 

morphism over N, so is ¢.  Thus N ( W ) / N ( ¢ ( W ) )  is a finite separable exten- 

sion. Since the extension N ( ¢ ( W ) ) / M ( ¢ ( W ) )  is also finite and separable, so is 

M ( W ) / M ( ¢ ( W ) ) .  

Thus, ¢ is a separable dominating morphism over M. Since M is PAC over 

O, there exists b • W(M)  such that ¢ (b)  • 0 ~d. Let a = A(b). By (1) and (2), 

and by the commutativity of the diagram, a • V(N) and ~(a) C S ~. Conclude 

that N is PAC over S. | 

Contrary to separable extensions, a variant of Roquette's descent which we 

establish here proves that purely inseparable extensions of a PAC over a subring 

O are again PAC over O. 

LEMMA 2.2: Let M ' / M  be a purely inseparable extension. Let V be an ab- 

solutely irreducible affine variety of dimension r over M'. Let ~o: V ~ A r be 

a dominating separable rational map over M'. Then there exists an absolutely 

irreducible aft/he variety W of dimension r, a dominating separable rationM map 

~b: W ~ A r over M, and a birational morphism A: W ~ V over M' such that 

¢ =~ooA. 

Proof: Let p = char(M). The variety V and the map ~o are defined over a 

subextension M~ of M ' / M  of degree pk. Use induction on k to assume that 

k = 1 and therefore that (M')  p C_ M. 

Choose a generic point x = (Xl , . . . , xn )  for V over M' and let F = M'(x)  

be the function field of V. Then F/M'  is a regular extension of transcendence 

degree r and t = ( t l , . . . ,  tr) = ~(x) is a separating transcendence basis for F/M'.  

By [FJ2, second part of the proof of Lemma 9.16], t l , . . .  ,t~ form a p-basis for 

F / M ' F  v. In particular F = M'FP(t). Also, N = F ( t  l/p) is a purely inseparable 
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extension of F of degree p~ and M ' N  p = M'FP( t )  = F. This implies that  N / M '  

is a separable extension IF J2, Lemma 9.16]. 

We claim that  M '  is algebraically closed in N. Indeed, if a E /~/N N, then 

a p E lf/I M F = M' .  Since N / M '  is separable, a E M' .  Combined with the former 

paragraph, we get that  N / M '  is a regular extension. Hence N P / ( M ' )  p is also a 

regular extension. 

Since (M' )  p C_ M ,  the field E = M N  p = MFP( t )  is a regular extension 

of M. As E is contained in F,  it is finitely generated over M [F J2, Lemma 

9.30]. Thus there exist Y l , . . . , Y ~  such that  E = M(y) .  Note that  M ' E  = 

M 'FP( t )  = F. Hence there exist f l , . . . ,  f m , 9  E M ' [ Y 1 , . . . ,  Y,~] such that  g(y)  ¢ 

0 and xl = fi(Y)/Y(Y), i = 1 , . . . , n .  Let Ym+l = g ( y ) - i  and let W be the 

variety generated over M by (y, Ym+t). Its  function field is E and therefore it is 

absolutely irreducible. 

The map A: W --~ V defined by 

A(Y, Ym+l) = ( f l (Y)Ym+l . . . .  , fn(Y)Ym+l) --= X 

is a birational morphism over M' .  

NV E F - - N  

I 
(M')P( t  p) - -  M( t )  - -  M ' ( t )  

I I 
M - -  M '  

Observe that  E is linearly disjoint from M ' ( t )  over M( t )  and E .  M ' ( t )  = F.  

Hence F / E  is a purely inseparable extension of degree [M'( t )  : M(t)] .  Since 

F / M ' ( t )  is a separable algebraic extension, so is E / M ( t ) .  Thus Q , . . . ,  t~ form 

a separating transcendence basis for E l M .  

Choose h i , . . . ,  h~ E M ( Y 1 , . . . ,  Ym) such that  ti = h~(y) and define a rational 

map ¢: W ~ A r over M by ¢(y ,  ym+l) = (hi (y)  . . . .  , h~(y)) = t. It is separable 

and dominating and ~ o A = ¢, as desired. I 

COROLLARY 2.3: Let M be a ~eld with a subring O and tet M '  be a purely 

inseparable extension of M.  Then M is PAC over 0 i f  and only i f  M '  is PAC 

over O. 
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Proo[: Suppose first that  M is PAC over O. Let ~: V --~ A r be a dominating 

separable rational map from an absolutely irreducible affine variety V over M p. 

Let ¢: W ~ A r and A be as in Lemma 2.2. By assumption, there exists b E 

W(M)  such that  ¢ (b )  E O r and ~ is defined at a = A(b). Thus a belongs to 

V(M') and satisfies ~(a)  = ¢ (b )  E O r. So M '  is PAC over O. 

Now suppose that  M I is PAC over O. Consider an absolutely irreducible 

polynomial f E M[T, X] which is separable in X.  Then there exist a E O and 

b E M '  such that  f(a, b) = 0 and f(a, X)  is separable. In particular b is separable 

over M. Hence, b E M. Conclude from Lemma 1.3 that  M is PAC over O. I 

Remark  2.4: Note that  the analog of Corollary 2.3 for PAC fields is not true. 

Indeed, Hrushovski [Hru, Cor. 5] constructs an example of a non-PAC field whose 

maximal purely inseparable extension is PAC. I 

COROLLARY 2.5: Let M be a PAC field over a subring 0 with a quotient field 

Mo. Let No be an algebraic extension of Mo and let S be the integral closure of 

0 in No. Then N = NoM is PAC over S. 

Proo~ By Corollary 2.3, it suffices to consider only the case where N is separable 

over M. Also, it suffices to consider the case where N / M  is finite. In this case 

there exists a basis Wl , . . . ,  Wd for No/Mo such that  wi is integral over O. Then 

B = { w l , . . . ,  Wd} generates N over M. Choose a basis B0 C_ B for N over M. 

By Lemma 2.1, N is PAC over O[B0]. Hence, N is PAC over S. | 

Let g(X) be a polynomial with coefficients in a field M. We say that  g(X) 

is Ga lo i s  o v e r  M if g(X) is separable and irreducible over M and the splitting 

field of g over M is generated by each of the roots of g. 

PROPOSITION 2.6: Let M be a perfect field which is PAC over a subfield K. 

Then, the maximal normal extension Mo of K in M is PAC. 

Proo~ Replace K by its maximal purely inseparable extension, if necessary, 

to assume that  K is perfect. By Remark 1.2(b), K is infinite. By [F J2, Thm. 

10.4] it suffices to prove that  every plane curve C which is defined over I (  has an 

M0-rational point. 

Let therefore x = (xl,  x2) be a generic point of C over K and let F = I f (x) .  

Then F is a regular extension of h ' .  Since K is infinite and perfect, Theorem 

F of [GaJ] gives a separating transcendence element t for F/I (  such that  the 

Galois closure F of F/K( t )  is regular over K(t). Choose a primitive element y 
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for F / K ( t )  which is integral over g[t] and let h(t, Y )  -- irr(y, g ( t ) )  E g[ t ,  Y]. 

Then h(T, Y )  is absolutely irreducible polynomial which is monic and separable 

in Y. 

Let Yl , . . . ,  Y~ be the distinct roots of h(t, Y )  in K(t)8.  One of them is y. Thus 

Yl , . . . ,  y,~ E F and there exist polynomials gi, hj E KIT,  Y] and 0 ~ go e KIT] 

such that x~ = g~(t ,y)/go(t) ,  i = 1,2, and yj = h j ( t , y ) /go ( t ) ,  j = 1 . . . .  ,n.  

Since M is PAC over K,  there exist a E K and c E M such that h(a, c) = O, 
Oh l a  c" I oY~ , J ~ 0, and go(a) ~ O. The specialization (t ,y) --* (a,c) extends to a 

place r :  F --~ M U {co} which maps each element of M onto itself. In particular 

h ( a , Y )  ~ Y . . . ,  = I l j=1( - cj) with cj = Tr(yj) = h j (a ,c ) /go(a)  E K(c) ,  j = 1, n. 

Hence K(c)  is a Galois extension of K which is contained in M and therefore 

also in Mo. Also, b~ = ~r(xi) -- g~(a,c)/go(a) E K(c) .  So, (bl,b2) is the point of 

C(Mo)  we were looking for. | 

3. Examples  of PAC field over subrings 

Recall that an integral domain O with a quotient field K is H i l b e r t i a n  if every 

Hilbert set of K contains points whose coordinates are in O. The remark on 

page 156 of IF J2] states that the ring of integers of each global field is Hilbertian. 

In particular, so is Z. If Ko is an arbitrary field, n is a positive integer, and 

t l , . . . ,  t ,  are algebraically independent elements over K0, then K o [ t l , . . . ,  tn] is 

a Hilbertian ring. Finally, the holomorphy ring of finitely many valuations of a 

Hilbertian field is Hilbertian. 

If we only demand that every separable Hilbert set of K [F J2, p. 147] contains 

points whose coordinates are in O, then we say that O is s e p a r a b l y  H i l b e r t i a n .  

If char(K) = p, we let Kins = U~=I K1/p~ be the maximal purely inseparable 

extension of K and let Oi,s = U~=101~pro" If O is Hilbertian, then, since the 

map x H x p'~ isomorphically maps K 1/p~" onto K and O 1/pro onto O, it follows 

that Oins is separably Hilbertian. 

Recall that  if a l , . . . , a ~  E G ( K ) ,  then Ks(a)  is the fixed field in Ks of 

a l , . . . ,  he. We denote its maximal purely inseparable extension by f ( (a) .  The 

following result strengthen IF J2, Thm. 16.18]. 

PROPOSITION 3.1: Let  0 be a countable separably Hilbertian integral domain 

with a quotient field K .  Let  e be a positive integer. Then, for almost all a E 

G ( K )  ~ the fields Ks (a )  and [((a) are P A C  over O. 
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Proof." By Corollary 2.3 it suffices to prove the statement for the fields Ks(a).  

For each finite separable extension L of K,  for each absolutely irreducible 

polynomial f E L[T, X] with o°-/x-x ¢ 0 and for each 0 ~ g E L[T] let 

S(L,  f ,  g) = {a e G(L)el there exists (a, b) e O x Ks(a)  

such that  f (a ,  b) = 0 and g(a) ¢ 0}. 

Denote the normalized Haar measure of G(L) e by #L. We will prove that  

#L(S(L,  f ,  g)) -- 1. Since K is countable, Lemma 1.3 will then imply that  Ks(a)  

is PAC over O for almost all a C G(K)% 

To prove the assertion we construct by induction a linearly disjoint sequence 

of separable extensions Li of L of degree d = d e g x ( f )  for which there exists 

a point (a,b) E O × Li such that  f (a ,b)  = 0 and g(a) ¢ O. Indeed, having 

constructed L 1 , . . . ,  Ln, we use IF J2, Cor. 11.7] to find a • O such that  f (a ,  X )  

is an irreducible polynomial over L 1 . . . L ~  and separable in X and g(a) ~ O. 

Then we take b • Ks such that  f (a ,b)  = 0 and define Ln+l = L(b). Then 

L b . . . ,  L,~+I are linearly disjoint over L. 

By [FJ2, Lemmas 16.7 and 16.11], almost all Ls(a) contain one of the fields 

Li. Hence # L ( S ( L , f , m ) )  = 1 as asserted. | 

Valuations and orderings v l , . . . , v , ~ ,  < 1 , - . . ,  <n of a field K are said to be 

i n d e p e n d e n t  if the topologies of K induced by them are distinct. 

P R O P O S I T I O N  3.2: Let vl, • •., vm, < 1 , .  • • ,  <n be independent valuations and or- 

derings of a countable separably Hilbertian ~eld K.  Denote the topology that 

they induce on K by T. Then, for almost all a • G(K)  ~, the tleld Ks(a)  is PAC 

over each T-open subset of K.  

Proof: Each set of the basis of ~- has the form 

A = {x e K I v i ( x - a i )  > vi(bi), i = 1 , . . . , m  and cj <j x <j dj, j = 1 , . . . , n }  

where ai, hi, cj, dj are elements of K.  The intersection of A r with each separable 

Hilbert subset of K ~ is nonempty [Ja2, Lemma 19.5]. So, we may repeat the 

proof of Proposition 3.1, with a vector (T1 . . . . .  T~) of variables instead of T and 

with a E A ~ instead of a E 0 in the third paragraph of the proof. | 

Example 3.3: Non algebraic PAC extension of a ring. For a field K to be PAC 

over a subring O is an elementary statement about the pair (K, O). Hence, this 
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property is preserved by ultraproducts. Let for example, K = Q(a) be one of 

the fields as in Proposition 3.1 which is PAC over Z and K 7~ Q. Let (K*, Z*) 

be a nonprincipal ultrapower of (K, Z). Then, since (K : Q) = ~ ,  the field K* 

is not algebraic over Q* (=the quotient field of Z*). Indeed, it has an infinite 

transcendence degree. On the other hand, K* is not algebraically closed. So, 

this example does not fall under the scope of Example 1.4. | 

Remark 3.4: The proof of Proposition 3.1 can be adjusted to yield a stronger 

property than "PAC over O ' :  

Let O be a countable separably Hilbertian integral domain with quotient field 

K.  Let e be a positive integer. Then, for almost all a E G(K)  e the fields Ks(a)  

and f ( (a )  have the following property: Let V be an absolutely irreducible variety 

of dimension r _> 0. Let ~: V ~ A ~ be a dominating separable rational map over 

Ks(a)  (resp., K(a) ) .  Let H be a separable Hilbert subset of Ks(a)  ~ (resp., 

/~'(a)~). Then there exists a e Y ( K s ( a ) )  (resp., K(a ) )  such that ~a(a) • H N O  ~. 

Proposition 5.2 essentially derives a somewhat weaker form of this property 

from the Mordell conjecture for infinite finitely generated fields. | 

4. Cove r s  of  cu rves  

Each curve F can be covered by another curve A of arbitrarily large genus. 

We construct A such that it is not birationally equivalent to a curve which is 

already defined over a finite field. The latter condition is necessary in positive 

characteristic in order to apply the theorem of Manin-Grauert-Samuel. 

Throughout this section we will be working over a field K that satisfies the 

following assumption: 

Assumption 4.1: K is a perfect field of characteristic p >_ 0 which is not an 

algebraic extension of a finite field. | 

LEMMA 4.2: Consider elements C l , . . . ,  cr C ~i', which are pairwise nonconjugate 

over K .  Let L be a finite Galois extension of K which contains cl . . . .  , cr. For 

each j let dj = [K(cj) : K], and let c j l , . . . , c j ,~ j  be the conjugates of  cj over K.  

Let also m >_ 4 be an integer. 

Then, for each 1 <_ j < r and 1 <_ k <_ dj there exist m distinct elements 

x j k l , . . . , x j k m  E L and there exists a monie polynomial q E K[X] of degree 

d e = 2 + m ~-~j=l J such that 

(a) q(x j k l )=Cjk ,  l =  l , . . . , m ,  
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(b) the equation q(X) = cjk has no multiple roots; in particular q(X) is a 

separable polynomial, and 

(c) i fp  > O, then Xjk4 ~ ~(Xjkl,Xjk2, Xjk3). 

Proo~ We break the proof into four parts. 

PART A: Construction Of Xjkl. By assumption, the elements cjk, j = 1 , . . . , r ,  

k = 1 . . . . .  dj are distinct. Consider first the case where p = 0 and choose 

bj l , . . .  ,bjm • I£ such that 

(la) 

(lb) 

bj; + cjk ¢ 0 

bit + cjk ¢ bj,l, + ej,k, if (j, k, l) 7 £ (j', k', l') 

for all j, k, I. Then let Xjkl - ~  bjl t- cjk and observe that 

(2a) 

(2b) 

(2c) 

xjk; ¢ 0 

(j, k, l) ¢ (j ' ,  k', l') implies x y  ¢ xj,k,t,, and 

acjk = cjk, implies axjkt = Xjk,l 

for all 1 _< j <_ r, 1 < k < dj, 1 < l < m, and c~ • G(L/K) .  

Next suppose that p > 0 and let T be a transcendental basis of K/Pp. By As- 

sumption 4.1, T is nonempty and therefore L1 = Fp(T, cjkl j = 1 , . . . ,  r and k = 

1 . . . . .  dj) is an imperfect field which has a finite degree over Fp (T). In particular, 

ILl : L~'] > pn for each positive integer n. Hence, we may choose n such that 

Nv(T) ~£ L~ ~. Since Fp(T) is infinite, we may choose bj l , . . . ,b j , , ,  • ]Fp(T) such 

that 

(3a) 

(35) 

(3c) 

bj; + 0 

bjl + ~k  ¢ bj,t, + ~'k' if (j, k, l) ~ (j', k', l') 

by1, bj2, bja • Fp(T p~) and bj4 • Fp(T) ' .  L p~ 

Now let xjkt = bit + cxjj~k and observe that again (2) holds. 

PART B: Proof of(c).  I f p  > 0, let Lo be the algebraic closure of Fp in L1. It 
p• pn 

satisfies L0 = L 0 C L t and therefore L1 is linearly disjoint from l~pL1 p~ over 
p'~ 

L 1 . Since by (3c), bj4 E L1 \ L p~, this implies that xjk4 ~ ~pL p~. On the other 

hand Xjkl, 3:jk2, Xjk3 • ~ L ~  ~. Hence xjk4 q~ L ( x j k l ,  xjk2, xjka). So, (c) holds. 
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r PART C: Construction o f q ( X ) .  Let e = 2 + m ~ j = l d  j.  Consider the matrix 

A = (x}kt) of order (e - 2) x (e - 2) in which to each triple (j, k, l) with 1 _< j < r, 

1 < k < dj, and 1 < l < m there corresponds a row 

(x2kl 3 e-1 
X j k  l . ' .  X j k  I ).  

If we factor out X2kt from the (j, k , / ) th  row we get a Van-der-Monde matrix. 

Conditions (2a) and (2b) imply that  det(A) ¢ 0. Hence, for each a E K there 

are unique a 2 , . . . ,  he-1 E L such that  

e--1 

a + xjkl + E alxj kt + x~ kt = Cjk, (4) 
j = l , . . . , r ;  k = l , . . . , d j ;  l = l , . . . , m .  

Consider a C 6 ( L / K ) ,  1 < j ~ r, and 1 < l < m. For each k between 1 and dj 

there exists a unique k' between 1 and dj such that  ( r e j k  -= Cjk,, and therefore, 

by (2c), axjkl  = xjk,Z. Hence, a permutes the system of linear equations (4): 

e - - 1  

a + Xjk,l + E ( a a i ) x ~ k , z  + X~k, z = Cjk,, 
(5)  

j = l , . . . , r ;  k ' = l , . . . , d j ;  l - - 1 , . . . , m .  

Since the solution to (4) is unique, a a i =  ai. As a~ C L, this implies that  a~ E K,  

i = 2 , . . . , e -  1. Thus 

e - - 1  

q~(X) = a + X + E a i X  i + X ~ 
i=2 

is a monic polynomial with coefficients in K which satisfies q~(xjkl) = cjk for all 

j, k, I. 

In order to complete the proof, we have now only to choose a such that  the 

polynomial q(X)  = q~(X) will satisfy (b). To this end choose a transcendental 

element t over K.  Then qo(X) - t is a monic, irreducible, and separable polyno- 

mial in X over K(t ) .  Hence, qo(X) - t  has no multiple roots. So, its discriminant 

R(t )  = Resultant(q0(X) - t, q~o(X)) is a nonzero polynomial in t. Choose a e K 

such that  R ( C j k -  a) ~ O, j = 1 , . . . , r ,  k = 1 , . . . , d j .  The identity 

Resultant(q~(X) - cjk, (q~(X) - cjk)') = aesul tant(q0(X) - (cjk - a), q~o) 

= R(c k - a)  

implies that  q~(X) - cjk has no multiple roots, j = 1 , . . . ,  r, k = 1 . . . .  , dj, as 

desired. | 
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LEMMA 4.3: Let Eo, Fo, E, F be function fields of one variable over an alge- 

braically closed fieM 1~£. Suppose that genus(Eo) = O, no prime divisor of Eo 

ramifies both in E and in Fo, E is linearly disjoint from Fo over Eo, and F -- E Fo. 

Let ~ = [Fo: Eo] and n = [E:  Eo]. Then 

(6) genus(F)  -- ¢(n + genus(E)  - 1) + n(genus(Fo)  - 1) + 1 

Proo£: As E and Fo are linearly disjoint over Eo, we have [F : Eo] = en. 

Hence, by the Riemann genus formula 2. genus(F) - 2 = -2en  + deg(0'), where 

O' = different(F/Eo) [FJ2, p. 24]. Similarly 2.  genus(E) - 2 = - 2 n  + deg(0), 

where 0 = different(E/Eo) and 2.  genus(Fo) - 2 = - 2 e  + deg(0o), where 0o = 

different( Fo/ Eo). 

By assumption, none of the prime divisors of 0 ramifies in F. Hence, the 

contribution of 0 to the degree of 0' is e deg(0). Similarly, the contribution of 0o 

to the degree of 0' is n deg(Do). As each prime divisor of 0' divides either 0 or 

0o, we have deg(D') = e deg(D) + n deg(Do). Substitute this value in the formula 

for genus(F) of the preceding paragraph to get (6). | 

LEMMA 4.4: Let Fo be a function field of one variable over an algebraically 

dosed field [(o, and let F be a function field of one variable over an algebraically 

closed field K that contains [(o such that [( Fo = F. Let x E F be a separating 

transcendence element for F /  I(. Then there exists ~2 E Fo which is a separating 

transcendence element for F/~[ such that [Fo:/(o(:~)] = [F : /£ (~) ]  = [ F : / ( ( x ) ] .  

Proof'. Since Fie f ( x )  is a finite separable extension, there exists y E F which 

is integral over/~'[x] such that F = / £ ( x ,  y). Let f E /£[X, Y] be an irreducible 

polynomial, monic in Y such that f ( x ,  y) = O. 

Write Fo =/~'o(u, v) where u is a separating transcendence element for Fo/~[o 

and v is a primitive element for Fo/Ko(u). Let h E /(o[U, V] be an irreducible 

polynomial such that h(u,v) = 0. By assumption F = / ( (u ,v) .  Hence, there 

exist polynomials 0 # ko e/~'[U], ks e/~'[U, V], 0 # go e/~'[X], gl, g2 e/~'[X, Y] 

such that deg y kl < deg v h and 

k l ( u , v )  ~ l ( x , y )  92(x ,y )  
(7) x -  ko(u---5-' u -  9o (x~ '  v -  9o(x-----V" 

Since f(o is algebraically closed, there exists a place ~ : / (  --~/~'o U (cx)} which 

is the identity on /~'o such that the images of the coefficients of all the above 
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polynomials are finite, ] (X,  Y) is irreducible over [Co, f~l(u, V) ~ Clio(u) for all 

c E / (o  (Bertini-Noether), and fCoOo ~ 0. Here we have put a bar over an element 

of [( or over a polynomial with coefficients in [( in order to denote the image 

under ~. 

Since the transcendence degree of Fo over /~o is equal to the transcendence 

degree of F over / ( ,  the fields Fo a n d / (  are algebraically independent (=free) 

over /~o. Hence, as Fo/Ifo is regular, it is linearly disjoint from [(/[(o [F J2, 

Lemma 9.9]. Since F = /~Fo, ~ extends to an Fo-place ~: F ~ /lo t3 {~} .  

Apply ~ to (7) 

(8)  2 -   o(u) ' u -   o(2) ' v =   o(2) " 

Since kl(u,V) ¢ cko(u) for all c E /(o, degy kl < degv h and h is irreducible 

over /(o, relation (8) implies that 2 ~ /(o. Hence 2 is transcendental over / (o  

and therefore t)o(2) # 0. Hence, (8) implies that Fo = / (o (2 ,  9). 

Since ](2, Y) is irreducible and separable over/~'o(2), it follows that Fo/[(o(2) 
is a separable extension of degree degy f = IF : /((x)] .  

Finally, observe that Fo is linearly disjoint from /7((2) over [(0(2). Hence, 

[F:/~[(2)] = [Fo:/~'o(2)] = [F:/~'(x)], as desired. I 

Remark 4.5: Branch points and M6bius transformations. Let F / K  be a regular 

extension of transcendence degree 1. Consider a separating transcendence ele- 

ment t for F/K.  The b r anch  po in ts  of F/K(t)  are the images of t in/~" U {cx~} 

of those places of K(t) which are trivial on K and ramify in F (note that  the 

branch points depend on t). The set of all branch points of F/K(t )  is finite and 

invariant under the action of G(K). If x is a primitive element for F/K(t )  which 

is integral over K[t] and f( t ,  X) = irr(x, K(t)), then for each finite branch point 

c of F/K(t) ,  the polynomials f(c, X) and ~x(c ,X)  have common roots [La3, 

p. 62]; that is f(c, X) has multiple roots. 

If t '  is another element of F such that K(t') = K(t), then there exists a Mhbius 

transformation ~-(X) = (aX + b)/(cX + d) with coefficients in K (which must 

satisfy ad - bc ~ 0) such that T(t) = t'. It maps the branch points of F/If( t)  
(with respect to t) to the branch points of F/K(t ' )  (with respect to t'). Also, if 

q(z) = t' for some nonconstant q e K[X], and T-I(X)  = (a'X + b')/(c'X + d'), 
then u(X) = (a'q(X) + b')/(c'q(X) + d') belongs to K(X)  and satisfies u(x) = t. 

We will use the following basic fact about Mhbius transformations: Given two 

triples (xl, x2, x3) and (x~, x~, x~) of elements of K there exists a unique Mhbius 
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t ransformat ion T such tha t  v(xi)  = x~, i = 1, 2, 3. If Ko is a subfield of K ,  then 

T is already defined over K0(x,  x~). I 

LEMMA 4.6: Let t be a transcendental element over K, let E0 be a finite Galois 

extension of K(t ) ,  and let go > O. Let E = [x'Eo, and set d = [E : f (( t )] .  

Then there exist a rational function q C K ( X ) ,  and an element x E K(t)~ which 

satisfies q(x) = t, E is linearly disjoint from I((x)  over K(t) ,  and such that the 

following holds: 

(a) If  Do is a regular extension of K such that K(t )  C_ Do C_ Eo, then K(x)Do 

is a regular extension of K.  

(b) Let F1 be a proper extension of f ( (x)  which is contained in F = E(x) .  

Then genus(F1) > m a x { ( d -  1 ) ( 2 d -  1), go}. 

(c) / f  cha r (K)  = p > 0, then there exists no function field of one variable Fo 

over ~p such that K(x )  C KFo C_ F. 

Proo~ Assume without  loss tha t  d > 1. We break the proof  into four parts. 

PART A: Construction ofq and x. Replace t by a suitable Mhbius t ransforma- 

t ion of t over K,  if necessary, to assume tha t  (t)o¢ does not ramify in E.  Choose 

representatives C l , . . . , c r  E / (  for the conjugacy classes over K of the branch 

points of E l K ( t ) .  Let L be the Galois closure of K ( c l , . . . ,  cr) /K.  For each j let 

dj = [K(cj):  K]. Since d > 1, E/[x'(t) is a ramified extension [FJ2, Prop.  2.15]. 

Hence r _> 1 and we may choose an integer m > 4 such tha t  

(9) e = 2 + m ~ d j  > m a x { ( d -  1 ) ( 2 d -  1),g0} + 1. 
j = l  

Finally, let cjk, xjk~ E L and q C K[X] be as in Lemma 4.2. 

Now choose x e K(t)~ such tha t  q(x) = t. Then  q(X) - t = irr(x, l~ '( t)) ,  

e = [/-((x) : / ( ( t ) ]  and (t)oo total ly ramifies in [((x). Indeed, x ~ + ae_l  xe-1 + 

• " + a 0  = t with ai C K.  Let v be a valuation of l~(x) over K such tha t  

v(t) < 0. Then  v(x) < 0 and therefore ev(x) = v(t). So, the ramification index 

of K ( x )  over K( t )  is e. By the choice of t, ( t )~  is unramified in E .  Hence 

/ ( (x )  N E = /~(t).  Since E is a Galois extension o f /~ ( t ) ,  it is linearly disjoint 

f r o m / ( ( x ) .  

PART B: Proof of  (a). Let Do be a regular extension of K such that  K(t)  c_ 

Do C_ So. Then  D = /~Do satisfies [D :  /~'(t)] = [Do : K(t)] .  By the preceding 
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paragraph, [D(x) : /~(x) ]  = [D: /~ ( t ) l .  As [K(x)Do: K(x)] _< [Do : K(t)], we 

conclude that [Do(x): K(x)] = [D(x) : / ((x)] .  Hence, K(x)Do is linearly disjoint 

f r o m / (  over K, which means that K(x)Do is a regular extension of K. This 

proves (a). 

PART C: Proof of(b). For each finite branch point c o f f ( (x) / f f ( t )  the equation 

q(X) = c has multiple roots (Remark 4.5). Hence, by Lemma 4.2(b), none of the 

branch points cj of E/Y£(t) is a branch point of R(x)/Y¢(t). Let F1 be as in (b). 

As ElK(t )  is a Galois extension and [((x) A E = f((t),  there exists a field Ex 

be tween / ( ( t )  and E such that K(x)E1 = F1. In particular n = [El : / ( ( t ) ]  = 

[F1 : /~(x)]  > 1. So, we may apply Lemma 4.3 to/~((t), [((x), El, F1 instead of 

to Eo, F0, E, F ,  substitute genus(F0) = 0, and compute from (6) and (9) that 

genus(F1) > (e - 1)(n - 1) > m a x { ( d -  1 ) ( 2 d -  1),9o}. This proves (b). 

PART D: Proof of (c). Finally assume that p > 0 and that there exists a func- 

tion field Fo of one variable over Fp such that F1 = / ( F 0  satisfies/-((x) C F1 C_ F. 

By Lemma 4.4, there exists 2 C Fo such that 

(10) n = [F0: ]Fp(2)] = IF1:/~(Y~)] = [FI: /~(x)] .  

Let h E /£[X, Y] be an irreducible polynomial such that h(x, 2) = O. Then 

deg X h = [K(x, Y:) : /~'(2)] _< [/'1 : R(2)] = n. Similarly, degy h = j£(x, 2) : 
K(x)] < n. Hence, deg(h) < 2n. It follows that genus(/((x, 2)) < ( 2 n -  1)(n - 

1) < ( 2 d -  1 ) ( d -  1) [F J2, Cor. 4.8]. (Actually, a theorem of Segre gives a better 

estimate, genus(/~(x, 2)) < (n - 1)2.) By (b), /~(x, 2) = / £ ( x ) .  Conclude from 

(10) t ha t /£ (x )  = K(2).  

It follows that there exists a Mbbius transformation T ove r / (  such that r(2) = 

x. It transforms branch points of FO/Fp (2) into branch points of F1/R(x). The 

latter belong t o / (  tO {co}. 

On the other hand, the elements cjk are all branch points of E/[£(t). Let Ex 

be a field as in Part C. Since E1/K(t) is a ramified extension [FJ2, Prop. 2.15] 

there exist j and k such that cjk is a branch point of E1/i-((t). 
Since q ( X ) -  t is irreducible over /£(t), and since q(xjm) = cjk, the spe- 

cialization t --* cjk extends to a place o f / ( ( x )  over / (  that maps x into xjm, 
l = 1 , . . . ,  m. By Lemma 4.2(5), cjk is not a branch point of ~Y((x)/I~(t). Hence, 

xjkt is a branch point of Fa/I~(x), l = 1 , . . . ,  m. 

Since F1 = FoK(2),  each prime o f /£ (x )  = /~'(2) that ramifies in F1 must 

be an extension of a prime of Fp (2) that ramifies in F0. Hence, the branch 



Vol. 86, 1994 PAC FIELDS OVER RINGS 43 

points of F1/[((x)  are the images under r of the branch points of FO/~p(X). 

In particular there exist 21,5:2, 23, x4 E Fp [-) {(X)} such that T(21) = Xjkt for 

1 = 1, 2, 3, 4. Hence, T is already defined over ]Fp (xjkl, xjk2, xjk3). Consequently, 

Xjk4 =- 7-(24) G ~p(Xjkl,  Xjk2,Xjk3). This contradiction to Lemma 4.2(c) proves 

that Fo as above does not exist. This proves (c) and concludes the proof of the 

lemma. | 

PROPOSITION 4.7: Let jr be a fni te  set of absolutely irreducible polynomials 

f C K[T, Y] such that f is separable in Y and deg T f _> 1. Let go > O. Then 

there exists a nonconstant rational function q E K ( X )  such that each f C jr 

satisfies: 

(a) the plane curve A which is defined over K by f (q (X) ,  Y)  = 0 is absolutely 

irreducible, and 

i fdeg v f >_ 2, then 

(b) the genus of A is at least go, and 

(c) A is birationally equivalent over f f  to no curve which is defined over a finite 

field. 

Proof: Let t be a transcendental element over K. Take a finite Galois extension 

Eo of K(t)  which contains the roots of all f ( t ,  Y )  = 0 with f E jr. Let q and x 

be as in Lemma 4.6. 

To prove the Proposition consider f C j r  and let y E Eo solve the equation 

f ( t ,  y) = 0. As f is absolutely irreducible, Do = K(t ,  y) is a regular extension 

of K,  and [Do : K(t)] = deg v f .  Let A be the plane curve defined over K by 

f ( q ( X ) , Y )  = 0. Then K(x)Do is the function field of A over K. Since, by 

Lemma 4.6(a), K(x)Do is a regular extension of K, the curve A is absolutely 

irreducible. Also, D = [f(x)Do is the function field of A o v e r / ( .  

Assume now that deg v f _> 2. S ince / (Eo  is linearly disjoint f r o m / i ( x )  over 

/ ( ( t )  (Lemma 4.6), [((x) C D C_ ffi(x)Eo. Hence, by Lemma 4.6(b), the genus 

of A is at least go. Also, by Lemma 4.6(c), A is birationally equivalent over f (  

to no curve which is defined over a finite field. This concludes the proof of the 

lemma. | 

5. H i l b e r t  se ts  ove r  f in i te ly  g e n e r a t e d  fields 

We say that a field K is f in i te ly  g e n e r a t e d  if it is finitely generated over its 

prime field. If K is in addition infinite, then K is Hilbertian IF J2, Cor. 12.8 and 
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Thm. 12.10]. 

Our aim in this section is to generalize [Ser, p. 36, Exer. 2] from Q to an 

arbitrary finitely generated field K and to prove that each separable Hilbert set 

of K contains the image of a rational function. The main tools in the proof 

are the theorems of Manin-Grauert-Samuel and of Faltings, that is, Mordell's 

Conjecture over functions fields and over number fields. 

Definition 5.1: Absolute genus. If an absolutely irreducible curve F is defined 

over a perfect field K, then its genus is preserved under extensions of the field of 

constants. If K is imperfect, then its genus may drop. The a b s o l u t e  genus  of 

F is its genus over/~.  | 

The following generalization of Mordell's Conjecture is well known. 

PROPOSITION 5.2 (Mordell's Conjecture): Let K be a finitely generated field. 

Suppose that F is an absolutely irreducible curve defined over K such that 

(a) the absolute genus g of  F is at least 2, and 

(b) F is birationally equivalent over K to no curve which is defined over a finite 

field. 

Then F(K)  is a finite set. 

Proof'. Let Ko be the algebraic closure in K of the prime field of K.  Then Ko 

is a finite field, if char(K) > 0, and a number field if char(K) = 0. Also, K is a 

regular extension of Ko of finite transcendence degree. Let L = / ~ o K .  Then L is 

a function field over/<o of several variables. 

Assume that F(K)  is an infinite set. Then, so is F(L). By a theorem of Manin- 

Grauert-Samuel [Sam, p. 107] there exists a curve A which is defined ove r / (o  

and there exists a birational equivalence ~: F -+ A which is defined over L. Take 

a finite extension K1 of Ko such that A is defined over K1 and ~ is defined over 

K'I = K I K .  

If char(K) > 0, then K1 is a finite field, which is a contradiction to (b). Hence, 

char(K) = 0 and K1 is a number field. It follows that genus(A) = genus(F) _> 2. 

Also, as F(K~) is infinite, so is A(K~). On the other hand, A ( L ) \  A(/(o) is a 

finite set [Sam, p. 105]. As A(K~) N A(Ko) = A(KI) ,  this implies that A(K1) is 

an infinite set. But this contradicts the famous theorem of Faltings [Fall. 1 

Consider an arbitrary field K. Let hi E K(T)[X]  be irreducible with degx(h~ ) 

> 1, i -  1 , . . . , m ,  and let 0 ~ g E K[T]. We work with two types of Hilbert 
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sets: 

H g ( h l , . . . ,  hm; g) = {a E K I g(a) ¢ 0 and hi(a, X)  is irreducible, i = 1 , . . . ,  n} 

H~g(hl, . . . ,hm;g) = {a e gI  g(a) ~t 0 and I-L~l hi(a,b) ¢ 0 for each b E K} 

If g = 1 we omit g. 

The following result strengthens IF J2, Lemma 12.1]. 

LEMMA 5.3: Let f E K(T)[X] be an irreducible polynomial, separable in X,  

with deg x ( f )  > 1. Then there exists a finite Galois extension L of K and there 

exist absolutely irreducible polynomials h i , . . . ,  hm C K[T, X], separable in X,  

with degx(h~ ) > 1, i = 1 , . . . , m ,  and a polynomial 0 ~ r E K[T] such that for 

every algebraic extension K ~ of K which is linearly disjoint from L over K we 

have: 

f is irreducible over K'  and H~K,(hl,..., hm; r) C_ Hg,( f ) .  

Proof: Write f ( T , X )  = r l (T) - l  f l ( T , X )  with 0 ~ r l  e K[T] and f l  • K[T,X]. 

If H~K,(hl,. . . ,hm;r) C_ HK,(fl) ,  then H~K,(hl,.. . ,h,~;rrl) C_ Hg,( f ) .  So, we 

may assume that  f • KIT, X]. Let to(T) be the leading coefficient of f ,  viewed 

as a polynomial in X.  Replace X by ro(T)X, if necessary, to assume that  f is 

monic in X.  We break the rest of the proof into three parts. 

PART A: Construction of L. Let f ( T , X )  ~ X = l-L=1( - xi) be the factorization 

of f (T,  X) in K(T)s[X]. Since f is irreducible, if I is a nonempty proper subset 

of {1 , . . .  ,n}, then f i ( X )  = I -LeI(X -x~)  ~ K[T,X]. So f i ( X )  has a coefficient 

Yl ~ K(T) ,  and g~ = irr(yi,  K(T)) • K[T, X] is monic and separable in X with 

degx(gl ) > 1. 
Let F be a finite Galois extension of K(T) that  contains x l , . . . ,  x~ and there- 

fore each yr. Then the algebraic closure L of K in F is a finite Galois extension 

of K.  Let K '  be an algebraic extension of K which is linearly disjoint from L. 

If f factors over K ' ,  then the coefficients of the factors belong to F A K '  and 

therefore to L ~ K '  = K.  So, the factorization is trivial and therefore f (T ,  X)  is 

also irreducible over K ~. 

PART B: Construction ofr  and h i , . . . ,  hm. Let I be a nonempty proper subset 

of {1 , . . . ,  n} such that  g1 is not absolutely irreducible. Since Yl E F, all roots 

of gI(T ,X)  belong to F. Hence, gl = gLl'" "gl,k, where each gl,j E LIT, X] is 

absolutely irreducible and k >_ 2. Since gl is monic and separable in X the factors 

gl,j are relatively prime. By the dimension theorem, W~ = V(g1,1,... ,gl,k) is 
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a finite set IF J2, Lemma 9.19]. Also, each two of the gt , j ' s  are conjugate by an 

element of G(L/K) .  Hence, if K '  is an extension of K as above, each two of the 

gt,j are conjugate by an element of 6 ( L K ' / K ' ) .  If a, b E K '  and gt(a, b) = O, then 

there exists j ,  1 _~ j _< k, such that  gLj(a,b) = O. It  follows that  gt,j(a,b) = 0 

for j = 1 , . . . ,  k. Hence (a,b) C Wt. Denote the projection of Wt on the first 

coordinate by At. 

Let A be the union of all sets At and their conjugates over K.  It  is a finite set. 

Then r(T)  = l - Iaea (T -  a) l, where I is an appropriate power of the characteristic 

of K,  is a polynomial with coefficients in K.  List those gl's which are absolutely 

irreducible as h i , . . . ,  hm. 

PART C: Conclusion of the proof. Consider an extension I f '  of K which is 

linearly disjoint from L over K.  Our construction shows that  

(1) 
H~.,(hl . . . .  , hm; r) C_ H~-,(gt[ I is a proper nonempty subset of {1 . . . . .  n}; r). 

We prove that  the right hand side of (1) is contained in HK,( f ) .  

Assume for a ~ K '  that  f ( a , X )  = p ( X ) q ( X )  factors nontrivially in K'[X]. 

Extend the K'-specialization T --+ a to a K'-specialization (T, x l , . . . , x ,~ )  --+ 
. n X (a, c l , . .  ,Cn) [FJ2, Propositions 2.3 and 2.5] so that  . f (a ,X)  = [ L = I ( - c i ) .  

For some nonempty proper subset I of {1 . . . . .  n}, p (X )  = 1-Le,(X - c i ) ,  the 

polynomial f i ( X )  maps to p(X) ,  and Yt maps onto a coefficient b of p(X) .  Then 

b lies in K '  and satisfies gt(a, b) = 0. Thus a does not belong to the right hand 

side of (1). | 

PROPOSITION 5.4: Let K be an infinite finitely generated field. Let f E K[T, Y] 

be an absolutely irreducible polynomial which is separable in Y.  Let g C I([T, Y] 

be an irreducible poIynomial which is separable in Y and let 0 ~ r E K[T]. 

Then, there exist a finite purely inseparable extension K '  of K,  a nonconstant 

rational function q E K ' ( X ) ,  and a finite subset S of K '  such that f ( q ( X ) ,  Y)  is 

absolutely irreducible and q(a) E HK, (g; r) for each a C K '  \ S. 

Proof: Lemma 5.3 gives a finite Galois extension L of K and polynomials 

h l , . . . , h m  E K[T,Y],  which are absolutely irreducible, monic and separable 

in Y, with degv(fli ) > 1, i = 1 , . . . ,  m, and a polynomial 0 # rx C KIT] such 

that  for every algebraic extension K '  of K which is linearly disjoint from L over 

K we have: 
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g is irreducible over K '  and H~g,(hl . . . .  , hm; r l)  C HK,(g; r). 

Apply Proposition 4.7 to the maximal purely inseparable extension/(ins o f / (  

instead of to K to find a nonconstant rational function q E /(ins(X) such that 

f (q (X) ,  Y)  and hi(q(X), Y)  are absolutely irreducible, and the curve Fi defined 

over/(ins by hi(q(X), Y) = 0 has genus at least 2, i = 1 , . . . ,  m, and is birationally 

equivalent over /~ to no curve which is defined over a finite field. Let K '  be a 

finite extension of K which is contained in /(ins, contains the coefficients of q, 

the curve Fi is defined over K ~, and its genus over/(~ equals its genus over Kins, 

and therefore to its absolute genus. In particular, /(~ is linearly disjoint from L 

over K. By Proposition 5.2, applied t o / ( '  instead of to K , / ( '  has a finite subset 

S such that for each a E / ( ' \  S the function q is defined at a, rl(q(a)) ¢ O, 

and none of the polynomials hi(q(a), Y)  has a root in K ~. Thus q(a) belongs to 

g~K,(hl , . . . ,hm;rl)  and therefore to HK,(g;r). | 

PROBLEM 5.5: Is it possible in Proposition 5.4 to choose q i n / ( ( X )  rather than 

in K'(X) ? 

The following lemma is a variant of [F J2, Lemma 12.12]. 

LEMMA 5.6: Let f (T1 , . . . ,  T~, X)  be an absolutely irreducible polynomial over a 

fietd K which is Galois in X.  Then, there is an absolutely irreducible polynomial 

h c K[T,  X] which is separable in X and a nonzero polynomial g E / ([T] such 

that for each algebraic extension If '  of K 

Hg,(h;g) C_ {a e (I( ')rl  f ( a , X )  is Galois over K'  and 

G(f(a ,  X),  K') is isomorphic to ~ ( f ( T ,  X),  K ( T ) )  

as permutation groups of the respective roots} 

Proof: Let E = K ( T )  and denote the distinct roots of f ( T , X )  in Es by 

x l , . . . ,  Xn. Then l-[i¢j ( x i - x j )  --- gl (W)-lg2 (W), where gl, g2 e/([W] are nonzero 

polynomials; gl is a power of the leading coefficient of f to a positive degree. Let 

F = E(x)  be the splitting field of f over E and choose a primitive element z 

for F / E  which is integral over K[T]. Then h(W,X) = i r r (z ,E)  e KIT,  X] is 

absolutely irreducible and Galois in X, and the discriminant g3(T) of z over E 

belongs to KIT].  Finally put g = glg2g3. 

Let K '  be an algebraic extension of K, E '  = K ' (T ) ,  and F '  = E ' (x) .  Then 

the isomorphism G(F'/E')  ~ G(F/E) is also an isomorphism ~(f(W, X), E') ~- 

~ ( f ( T ,  X),  E) as permutation groups. 
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Let R = K ' [ T , g ( T )  -1] and S = R[z]. Then S/R is a ring cover for F' /E '  

([F J2, Lemma 5.3]; note that KIT] is integrally closed). 

If a E Hxc, (h; g), then the specialization T ~ a extends to a K~-homomor - 

phism ~ of S onto a Galois extension L = K'(~(z)) of K' such that [L : K'] = 

[F' : E']. By [F J2, Lemma 5.5], ~ induces an isomorphism a H ~ of its decom- 

position group D(~) onto 6(L/K').  It follows that D(~) = 6(F'/E'). Moreover, 

for each x E S and a E ~(F'/E') we have ~(~(x)) = ~(a(x)). In particular, since 

all roots of f ( T ,  X) belong to S and since f (a ,  X)  has n distinct roots, qo maps 

the roots of f ( T ,  X) bijectively on the roots of f ( a ,  X) and the isomorphism 

~(F'/E') ~- G(L/K') is also an isomorphism G(f(W, X),  E')  ~ G(f(a ,  X),  K')  of 

permutation groups. I 

6. E x a m p l e s  o f  N o n - P A C  fields ove r  sub r ings  - -  s y m m e t r i c  e x t e n s i o n s  

We show in this section and in the next one that the major examples of algebraic 

extensions of Q which are PAC (except for almost all fields Q(a))  are not PAC 

over Q. The same holds for Fp (t). Actually, we work over each finitely generated 

field. 

Definition 6.1: Let t be a transcendental element over a field K. We say that a 

finite group G is r e g u l a r  over a field K if K(t) has a Galois extension E with 

~(E/K(t))  ~- G such that E l K  is a regular extension. 

Alternatively, there exists an absolutely irreducible polynomial f E KIT, X] 

such that f(t ,  X) is Galois over K(t) and ~(f(t, X), K(t)) ~- G. It follows that 

if t is transcendental over an extension L of K,  then 6 ( f ( t ,  X), L(t)) ~ G. I 

PROPOSITION 6.2: Let K be a finitely generated field, let M be a PAC field over 

K, and let G be a finite group which is regular over K. Then M / K  has a Galois 

subextension L / K  with ~(L/K) ~- G. 

Proof: Since M is PAC over K,  the field K is infinite (Remark 1.2(b)). By 

assumption, there exists an absolutely irreducible polynomial f E KIT, Y] such 

that f(T, Y) is Galois over K(T) and 6(f(T, Y), K(T)) ~- G. By Lemma 5.6, 

there is an absolutely irreducible polynomial h E K[T, Y] which is separable in 

Y and a nonzero polynomial r E KIT] such that for each algebraic extension K ~ 

of K and for each c E HK,(h; r) the polynomial f (c ,  Y) is Galois over K' and 

Y), K') a. 
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By Proposition 5.4, there exist a finite purely inseparable extension K '  of K,  

a nonconstant rational function q E K~(X) and a finite subset S of K ' such that  

S(q(X),  Y)  is absolutely irreducible and K'  \ S C_ {a • K '  I q(a) • Hg,(h; r)}. 

By Corollary 1.5, M0 -- Ks N M is PAC over K.  Hence, by Corollary 2.3, 

M~ -- K'Mo is PAC over K.  Hence, there exists a • K \ S and there exits b • M~ 

such that  f(q(a), b) = 0. Then K' (b ) /K '  is Galois and G(K'(b) /K' )  ~- G. Since 

~(Mo/ K )  ~ G(M~/K') ,  there is a Galois extension L of K which is contained in 

M0, and therefore also in M,  such that  G(L/K)  ~ G. | 

Remark 6.3: Regular groups over fields. Let K be a field. Then every abelian 

group IF J2, Lemma 24.46] and each of the groups Sn are regular over K.  

Many more finite groups are known to be regular over Q and hence over every 

field of characteristic 0. Among them are An (Hilbert), all sporadic simple groups 

(with the possible exception of M23) [Mat, Satz 8.2], and PGLn(Fq),  PU~(Fq2) 

for q an odd prime power, n _> 4 an even integer and n > q [Voe]. 

Less groups are known to be regular over Fp. If char(K) = p and I is a prime 

number that  does not divide p - 1 or l = p, then each group G of order l m is 

regular over Fp [RCVS, Thm. 6] and hence over every field of characteristic p. 

Probably, Shafarevich's proof goes through also for lip - 1, but this has yet to 

be checked. Incidentally, note that  it is not known if each group of order 1 m is 

regular over Q. 

In particular, if a finite group G is regular over an infinite finitely generated 

field K,  then Propositions 3.1 and 6.2 imply that  for almost all a • G(K) e there 

exists a Galois extension L / K  such that  L C_ Ks(a) and ~ ( L / K )  ~= G. This 

result however can be proved directly, without appealing to Faltings' theorem 

or to the Theorem of Manin-Grauert-Samuel.  Indeed, there exists a linearly 

disjoint sequence L1, L2, L3 , . . .  of Galois extensions of K with G(Li /K)  ~- G, 

i = 1, 2, 3 , . . .  [F J2, Lemma 15.8]. Then, for almost all a C G(K) e there exists i 

such that  Li C_ Ks(a),  as follows from IF J2, Lemma 16.11]. | 

We call a finite extension L / K  s y m m e t r i c  if it is Galois and ~ ( L / K )  ~- Sn for 

some positive integer n. We denote the composi tum of all symmetric  extensions 

of K by Ksymm. 

LEMMA 6.4: Let K be a finitely generated field and let N be a Galois extension 

of K which is contained in Ksymm. Then N is PAC over no finite extension K ~ 

of K. 
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Proof." Le t /~  be the Galois closure of KP/K. T h e n / (  C_ N and each composition 

factor of ~(N/~J) is either An, for some positive integer n, or Z/2Z.  

Assume that N is PAC over K ~. Then N is also PAC over if .  By Proposition 

6.2 and Remark 6 . 3 , / (  has cyclic extension L of degree 5 which is contained in 

N. This contradiction to the first paragraph implies that N is not PAC over K' .  

1 

Example 6.5: An algebraic extension of a finitely generated field K which is PAC 

but not PAC over K. If K is a finite field, then each infinite algebraic extension 

N of K is PAC IF J2, Cor. 10.5] but N is not PAC over K (Remark 1.2). So 

suppose K is infinite. Then K is Hilbertian. 

If char(K) = 0, Theorem 16.46 of IF J2] gives an example of a Calois exten- 

sion N of K which is PAC and ~ ( N / K )  is isomorphic to the direct product of 

symmetric groups. By Lemma 6.4, N is PAC over no finite extension of K. The 

same is true for gsymm. 
If char(K) > 0, then Kins is separably Hilbetian [F J2, p. 149, Exer. 2]. The 

proof of IF J2, Thm. 16.46] goes through for /(ins using [G J2, Thm. 10.5]. As a 

result, Kins has a Galois extension N which is PAC and ~(N/Kins) is isomorphic 

to the direct product of symmetric groups. As in the preceding paragraph, N is 

PAC over no finite extension of K. 1 

Example 6.6: The maximal solvable extension Qsol of Q. It is not known if Qso, 

is PAC. But since for n _> 5, Sn is not a quotient of ~(Qsol/Q), Proposition 6.2 

implies that certainly Q~oi is PAC over no number field. | 

We don't  know of any field N which is PAC and Galois over a finitely generated 

field, except when N is separably closed. But if such a field exists, the Galois 

group 6 ( N / K )  must be rich. 

PROPOSITION 6.7: Suppose that a field N is Galois and PAC over a finitely 

generated field K.  Then for each finite group G there e.xists a finite Calois 

extension K t of K and a GMois extension L of K ~ which is contained in N such 

that G(L /K ' )  -~ C. 

Proof: A theorem of Fried, Vhlklein, Harbater, and Pop asserts that each finite 

group C is regular over N [Ja3, Prop. 2.6]. It follows that G is already regular 

over a finite Galois extension K ~ of K which is contained in N. By Proposition 

6.2, K '  has a Galois extension L which is contained in N such that ~ ( L / K  ~) -~ C. 
| 
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7. E x a m p l e s  o f  n o n - P A C  fields over  rings - -  f inite  e x t e n s i o n s  o f  Qtr 

Denote the maximal totally real extension of Q by Qtr. It is the fixed field in 

of all involutions of G(Q). It is a Galois extension of Q. Florian Pop [Pop, Main 

Theorem] proves that Qtr is a PRC field. Hence, each algebraic extension M of 

Qtr is PRC [Pre, Thm. 3.1]. If, in addition, M is not formally real, then M is 

PAC. For example, Qtr(vZZ-f) is a PAC field. We prove in this section that  no 

finite extension of Qtr is PAC over Q. 

LEMMA 7.1: Let K be a field of characteristic ~ 2, let b E K,  and let k be a 

positive integer. Set L = K(2~/~) and E = K(~2~) (~2~ is a primitive root of 1 

of order 2k). Suppose that [L : K] = 2 k and that L N E = K.  Then, for each i 

between 1 and k, Li = K(2~/~) is the unique subfield of L of degree 2 i over K.  

Proo~ The assumption [L : K] = 2 k and the inequalities [Li : I(] _< 2 i and 

[L : Li] _< 2 k-i imply that [Li : K] = 2 i. 

On the other hand, suppose that K C K1, K2 C_ L and [K1 : K] = [K2 : K]. By 

assumption, L is linearly disjoint from E over K.  Hence [KIE:  El = [K2E: El. 

As L E / E  is a cyclic extension, K1E = K2E. Thus, K1K2E = KiE ,  i = 1, 2 and 

therefore [K1K2 : K] = [K1K2E : El = [I(iE : El = [I(i : K]. Conclude that 

K1 = K2. | 

THEOREM 7.2: Let K be a totally real number field. Then no finite extension 

of Qt~ is PA C over K.  

Proof: Let M be a finite extension of Qty. Assume that M is PAC over K. 

In order to draw a contradiction we choose a positive integer k such that 2 k > 

[M : Q t r ] .  Consider the absolutely irreducible polynomial f(T1,T2, T3, Y )  = 

Y 2~ + T~ + T22 + T32 (Apply IF J2, Lemma 16.22] o,1 Y 2k + Z). As in the proof of 

Lemma 1.3, find nonzero ci, c~ E K, i = 1, 2, 3 such that g(T, Y )  = Y 2k + (cl + 

c~T) 2 + (c2 + c~2T) 2 + (c3 + c~3T) 2 is absolutely irreducible. By IF J2, Lemma 11.6], 

K has a Hilbert set H = HK(p) with p E KIT, Y] an irreducible polynomial such 

that g(b, X )  is irreducible over K(42~) for each b E H. By Proposition 5.4, there 

exist q E K ( X )  and a finite subset S of K such that g(q(X),  Y)  is absolutely 

irreducible and g(q(a), Y)  is irreducible over K(42k ) for each a C K \ S. 

By assumption there exist a E K \ S and b E M such that g(q(a), b) = 0. Let 

c = (cl+c~q(a))2+(c2+c~q(a))2+(ca+d3q(a)) 2. Then b 2k = - c ,  [K(b) : K] = 2 k 

and K(b)glh'(~2~ ) = K. By Lemma 7.1, K(~/-2-~) is the unique extension of K of 

degree 2J which is contained in K(b), j = 1 . . . .  , k. Since K(~/Z-~) is not formally 
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real, K(b) NQtr = K. As Qt~/K is Galois, 2 k = [Qt~(b): Qt~] _< [M:  Qt~]. This 

contradiction to the choice of k implies that M is not PAC over K. I 

Remark 7.3: The case K = Q. It is possible to prove that no finite extension 

of Qtr is PAC over Q without applying Faltings' theorem. One may use in this 

case the absolutely irreducible polynomial X 2k + 7T12 + 7T22 + 7T32 and choose 

(el, a2, a3) ¢ (0, 0, 0) in Q3 and b • M such that b 2k = - 7 a l  2 - 7a 2 - 7a32. Since 

the equation t21 + t22 + t] = 7to 2 has no solutions in Q [CaF, p. 359, Exer. 4.10, 

or Se2, p. 45, Lemma A], c = - b  2~ is not a square in Q. Using ramification 

arguments and the identity (1 - x / ~ )  2 = -2x/-L--f in the case c = 2, one proves 

that b satisfies the conditions of Lemma 7.1 over Q. Then one proceeds as in the 

proof of Theorem 7.2. I 

The necessary condition on a Galois extension N of Q to be PAC over Q which 

Proposition 6.7 gives is not a sufficient condition. We show that Qtr(x/z-f), 

which is PAC but not PAC over Q (Theorem 7.2) satisfies this condition. Indeed, 

already Qtr does. 

To this end recall that a field M is P R C  (pseudo  rea l  closed) if every 

absolutely irreducible variety V which is defined over M has an M-rational point 

provided it has a simple 2f/-rational point for each real closure 2f/ of M. The 

latter condition is equivalent to "the unique ordering of i f /extends to an ordering 

of the function field of V over F/" [La2, p. 282]. 

PROPOSITION 7.4: Let M be a PRC field. Then every finite group G is regular 

over M. 

Proof." By a theorem of Harbater, G is regular over E = M((t)) [Har, Thm. 2.31. 

Thus, there exists an absolutely irreducible polynomial f E E[Y, Z] which is 

Galois in Z over E(Y)  and G(f(Y, Z), E(Y)) ~ G. Choose x l , . . . ,  Xn E E such 

that f is Galois over M ( x , Y )  and 6( f (Y ,Z ) ,M(x ) )  ~ G. Write f(Y, Z) = 

g(x, Y, Z) with g E M(x)[Y, Z]. 

By Bertini-Noether, there exists a Zariski-open subset U of A n (M(x))  which 

contains x such that for all a C U the polynomial g(a, Y, Z) is well defined, 

absolutely irreducible, Galois in Z over M(a,  Y), and G(g(a, Y, Z), M(a,  Y)) = G. 

As M((t)) is a regular extension of M, so is M(x) .  Thus, x generates an 

absolutely irreducible variety V over M, and U n V ¢ 0. Let M be a real closure 

of M. Then, the unique ordering of i f /extends to ]f/((t)) [Ja2, Example 18.9] and 
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therefore to .~/(x). Since M is PRC, there exists an M-rational  point a E U M V. 

Conclude from the preceding paragraph that  G is regular over M. I 

LEMMA 7.5: For every finite group G there exists a finite group H and an epi- 

morphism ~: H --* G which maps all involutions of H onto 1. 

Proof.' Use [H J2, Cor. 6.2] with I = 0. I 

THEOREM 7.6: For every finite group G there exist totally real fields K C_ L 

such that K is Galois over Q, L is Galois over K and 6 ( L / K )  ~ G. 

Proof*: Let ~: H --* G be an epimorphism as in Lemma 7.5. By [Pop], Qtr is 

PRC. Hence, by Proposition 7.4, H is regular over Qtr. Since Qtr is Galois over 

Q, H is already regular over a finite Galois extension K of Q which is contained 

in Qtr- As K is Hilbertian, there exists a finite Galois extension N of K such 

that  6 ( N / K )  ~- H. Let L be the fixed field in N of Ker(~).  Thus 6 ( L / K )  ~- G 

and resL~- = 1 for each involution ~- of 6 ( N / K ) .  

If L ~ Qtr, then there would exist an involution v E G(Q) \ G(L). In particular 

resgT would be an involution of ~ ( N / K )  whose restriction to L is not 1. This 

contradiction to the preceding paragraph proves that  L is totally real, as desired. 

I 

If  in the definition that  precedes Proposition 7.4, we let .~/ range over the 

p-adic closures of M, then M becomes P p C  ( p s e u d o  p -ad ica l ly  c losed)  [H J1, 

Def. 12.2]. We denote the maximal totally p-adic extension of Q by Qtp. As in 

the case of Qtr, [Pop] proves that  Qtp is a PpC field. 

PROBLEM 7.7: Let G be a finite group. Do there exist totally p-adic number 

fields K C_ L such that K is Galois over Q, L is Galois over K,  and g ( L / K )  ~- G? 

8. R e g u l a r  r e a l i z a t i o n  of  f in i te  g r o u p s  w i t h  r a t i o n a l  b r a n c h  p o i n t s  

Let K be a PAC field and let t be a transcendental element over K.  We say 

that  a finite group G is r e g u l a r  ove r  K w i t h  b r a n c h  p o i n t s  a l , . . . , a ~ ,  if 

there exists a finite Galois extension F of K(t)  which is regular over K such that  

6 ( F / K ( t ) )  ~ G and a l , . . . ,  a~ are all the branch points of F / K ( t ) .  In geometric 

terms F / K ( t )  corresponds to a (ramified) Galois cover ~: X --* p1 over K which 

remains a cover with the same Galois group after extending K to /~'. Then 

a l , . . .  ,a~ are the branch points of p i n / (  U {~} .  

* Together with Wulf-Dieter Geyer 
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THEOREM 8.1: Let M be a field o[ characteristic 0 which is PAC over a subring 

R and let G be a finite group. Then, for infinitely many  r, the group G is regular 

over M with exactly r branch points, all of them in R. 

Proof'. Lemma 2 of [FrV] constructs a finite group H with a trivial center such 

that  the Schur multiplier of H is generated by commutators,  and an epimorphism 

lr: H --* G. Let h be the number of nontrivial conjugacy classes of H.  For each 

multiple s :> 3 of h such that  H is generated by s - 1 elements consider an s-tuple 

C = (C1 , . . . ,  C8) of nontrivial conjugacy classes of H such that  each nontrivial 

conjugacy class appears  the same number of times among the Ci's. Fried and 

Vhlklein define a covering ffJ~: ~/in"(C) --~ Us, where//~ is a Zariski open subset 

of (p1)~, 7./inn(c ) is an algebraic set of dimension s, and all of these objects 

are defined over Q. To each field K of characteristic 0 and to each K-rat ional  

point q E 7-/~n(C) they associate a Galois covering ~: Y ~ PI(C) which is 

defined over K with Galois group G whose branch points are the coordinates of 

ff#(q) = ( b l , . . . ,  b~) such that  the elements of Ci generate the conjugacy class of 

inertia groups of the branch point bl, i = 1 , . . . ,  s [FrV, Thm. 1]. If in addition 

s is large enough, then 7-/~n~(c) is absolutely irreducible [FrV, Prop. 1]. In this 

case 7-/i"~(C) has an M-rational  point q such that  (b l , . . . ,b~)  • (b/~ A A~)(R). 

This point gives then a regular realization of H over M whose branch points are 

b l , . . . ,  b~. If we consider the fixed field of Ker(Tr) in the field that  realizes H,  we 

get a regular realization of G over M whose branch points are those bi such that  

Ci AKer(~r) = 0. List these b~'s as a l , . . . ,  a~. Their number is a positive multiple 

of s/h.  So, as s is large, so is r. | 

Combine Theorem 8.1 with Proposition 3.1: 

COROLLARY 8.2: Let R be a countable Hilbertian integral domain with a quo- 

tient field K of characteristic 0 (e.g., R = Z and K = Q). Then for almost all 

a E G(K)  e, t'or each finite group G and for infinitely many positive integers r, 

the group G is regular over I f (a)  with branch points a l , . . . ,  a~ C R. 

9. The density property 

We fix for this section a valued field (M, v) and an extension of v to /V/ which 

we also denote by v. We say that  (M, v) has the d e n s i t y  p r o p e r t y  if for each 

absolutely irreducible variety V defined over M the set V ( M )  is v-dense in V(J~/). 
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Since all extensions of v t o / f / a r e  conjugate over M, the density property of 

(M, v) does not depend on the particular extension. Note that the definition of 

[GeJ] asks for V ( M )  to be dense in Y(/f/,),  where /~/, is the completion of ~/  

with respect to v. But, by a theorem of Abraham Robinson [Pre, p. 241], the 

valued field (if/,, v) is an elementary extension of (.IV/, v). In particular, V(/f/) is 

v-dense in V(2~/,). So, the two definitions are equivalent. 

Note also that Fv = v(M x) is cofinal in v ( f I  x) [Ja2, Cor. 7.2]. So, while 

speaking about v-density in .£/it  suffices to consider approximations with respect 

to elements of Fv only. 

LEMMA 9.1 (Prestel): Let  M be a P A C  field and let w be a valuation o f  i~I. 

Then M is w-dense in Y/I. 

Proof." The proof is a slight variation of the proof of [FrJ, Thin. 10.14] (which 

is also due to Prestel). By [FrJ, Cor. 10.7] the w-closure of M in ~i  is a PAC 

field. Thus, we may assume that M is w-closed in f l  and prove that M =/l-I. 

To this end, let f E M [ X ]  be an irreducible separable polynomial of degree 

n _> 1 and let f ( X )  = 1-Ii~=l(x - x~) be its factorization in 2~/[X]. Consider 

"y E F = v(A) x) and choose c E M x such that w(c) > aT. By Eisentein's 

criteria, tile polynomial f ( X ) f ( Y )  - c 2 is absolutely irreducible. Hence, there 

exist x, y E M such that f ( x ) f ( y )  -- c 2. It follows from w ( f ( x ) )  + w ( f ( y ) )  = 

2w(c) that w ( f ( x ) )  > n"/ or w(. f (y) )  2 n',/. Suppose for example that the first 

possibility occurs. Then ~i~=~ w ( x  - x~) 2 n'y. It follows that there exists i such 

that w ( x  - xi)  > "/. 

Since {xl, • •. ,  x,~} is a finite set, it follows that there exists i such that for each 

"~o C F there exists ? > "~o and an x C M with w ( x  - x i )  > "~. This implies that 

xi C M and that therefore n = 1. Conclude that _hi = .~I. | 

We use vector notation. For a = ( a l , . . . ,  a~) c .]V/'~ we replace minl<i<n v(ai)  

by v(a). We denote the valuation ring of v in M by OM,,.  

THEOREM 9.2: Suppose that (M,  v) is a valued field and M is P A C  over OM,~. 

Then (M,  v) has the densi ty  property. 

Proof." Choose an extension of v to .~I and denote it again by v. Let V be 

an absolutely irreducible variety of dimension r in A n which is defined over M. 

Consider a point bo C V(/~) and let ~ ~ F. .  We have to find b E V ( M )  such 

that v(b - b0) > e. 
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To this end take a generic point x for V over M. Then F = M(x) is a regular 

extension of M of transcendence degree r. Let ~o: F -~ 2~/U {oc} be a place of 

F over M such that ~o(X) = bo. 

By Remark 1.2(a), M is PAC. Hence, by IF J1, Thm. 3.4], F / M  is a stable 

extension. That is, F / M  has a separating transcendence base t = ( t l , . . . , t~ ) ,  

such that the Galois closure F of F / M ( t )  is a regular extension of M. If ~o(ti) = 

e~ replace ti by t~ -1. Thus, without loss, assume that ao = ~o(t) ¢ oc. 

Choose a primitive element z for [ ' / M ( t )  which is integral over M[t]. Thus 

= M(t)[z]. In particular 

x = go( t ) - l~( t ,  z), with ~ = (h; 1 . . . . .  Nn) E M[T, Z] n and 0 ¢ too E M[T]. 

Let h E M[T, Z] be an absolutely irreducible polynomial which is monic and 

separable in Z such that h(t, z) = 0, and let d = deg z h. Then h(t, Z) has d 

distinct roots z l , . . . ,  Zd, all of them belong to F (because F / M ( t )  is Galois), and 

0 # discirminant(h(t, Z)) = [L¢j(z i  - zj) = q EM[t] .  Also, 

z = Ao(t)-lJl(t, z) with ,~ = (.~1,...,-~d) E M[T, Z] d and 0 ¢ ~o E M[T]. 

Extend ~o to a place ~Po of F. Since z is integral over M[t], we have Co = ~Po(z) E 

Let F (resp., W) be the absolutely irreducible variety in A ~+~+1 (resp., A ~+1) 

which is generated over M by the point (x, t, z) (resp., (t, z)). We may change 

(bo, ao, co), if necessary, in a small v-adic neighborhood of F(/I~/) to assume that 

q(ao)~o(ao)~o(ao) ¢ 0 [Mum, p. 82]. Ill particular bo = ~o(ao)-l~(a, c). 

Consider the following open neighborhood of (ao, co) in W(2i7/): 

Wo = {(a,c) E W(21))l q(a)go(a)Ao(a) :~ 0}. 

Then xi: Wo(2~/) ~ 5~/ is a continuous function in the v-adic topology, i = 

1 , . . . ,  n. Hence, there exists 5 E Fv such that for each (a, c) E Wo(2~/) 

(la) v(a - ao) > ~i implies q(a)go(a))~o(a) # 0, and 

(lb) v((a, c) - (ao, Co)) > ~i implies v(go(a)-itc(a, c) - bo) > ¢. 

Choose 7 > (~ such that for each a E 2(/~ with v(a - ao) > 7 there exists c E -~/ 

such that h(a, c) = 0 and v(c - co) > 6 [GeJ, Lemma 1.1]. Since M is v-dense in 

~ / ( L e m m a  9.1), we may choose al  E M r such that 

(2)  v ( a  I --  a o )  > ~/. 
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Now choose 0 ¢ m E OM such that v(m) > ~,. The polynomial h ( a l + m T ,  Z) E 

M[T,  X] is absolutely irreducible and, since discriminant(h(al,  Z)) = q(al) ¢ 0 

we have Oh ~--~(al + mW, Z) ¢ 0. Let a l , ~  E M[T ,Z]  and 0 ~ /3 E M[T] such 

that 
z O h a  a l ( W , Z ) h ( a l + m W ,  Z ) + a 2 ( W ,  )~-~( l + m W ,  Z ) = f l ( W ) .  

Since M is PAC over OM,,, there exists t l  C O~ , ,  and c E M such that h(al  + 

m t l , C ) = O a n d ~ ( % ) 7 ~ O ,  and therefore o ~ ( a l + m t l , c ) ¢ 0 .  So, a = a l + m t l C  

M r satisfies h(a, c) = 0 and ~-(a, c) ¢ 0. 

Let ¢ be a place of F over M such that ~p(t,z) = (a,c) (It is possible to 

choose ¢ such that its residue field will be M.) Note that v(a - a l )  > ~' > 6. 

Hence, by (2), v ( a - a o )  > 6. Therefore, cj = ¢(z j )  = ~0(a)-l ,~j(a,c)  e M and 

h(a, cj) = 0, j -- 1 , . . . ,  d. Since discriminant(h(a, z)) = q(a) ¢ 0, the elements 

c l , . . . ,  Cd are distinct. Hence they are all the roots of h(a, Z). Also, by the choice 

of % there exists k between 1 and d such that v(ck - co) > 6. Assume without 

loss that  ck = c. Then v(c - co) > 6. Let b = ¢(x)  = ~o(a ) - l~ (a ,c )  E V(M) .  

By the choice of 6, v ( b -  b0) > e. This completes the proof of the theorem. | 
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